A Gunn diode, also known as a transferred electron device (TED), is a form of diode, a semiconductor electronic component, used in high-frequency electronics. Its internal construction is unlike other diodes in that it consists only of N-doped semiconductor material, whereas most diodes consist of both P and N-doped regions. In the Gunn diode, three regions exist: two of them are heavily N-doped on each terminal, with a thin layer of lightly doped material in between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. Conduction will take place as in any conductive material with current being proportional to the applied voltage. Eventually, at higher field values, the conductive properties of the middle layer will be altered, increasing its resistivity, preventing further conduction and current starts to fall. This means a Gunn diode has a region of negative differential resistance. Its largest use is in electronic oscillators to generate microwaves, in applications such as radar speed guns and microwave relay transmitters.